热门帖子

2013年4月10日星期三

If Gravitation Have an Influence on Electromagnetism




From a cosmological perspective, gravitation causes dispersed matter to coalesce, and coalesced matter to remain intact, thus accounting for the existence of planets, stars, galaxies and most of the macroscopic objects in the universe. It is responsible for keeping the Earth and the other planets in their orbits around the Sun; for keeping the Moon in its orbit around the Earth; for the formation of tides; for natural convection, by which fluid flow occurs under the influence of a density gradient and gravity; for heating the interiors of forming stars and planets to very high temperatures; and for various other phenomena observed on Earth and throughout the universe.

Gravitation is one of the four fundamental interactions of nature, along with electromagnetism, and the nuclear strong force and weak force.A research published in Journal of Modern Physics examines the consequences of a assumption on physics(If gravitation have an influence on electromagnetism):

For many years physicists have been engaged on research around the globe in fields such as the unification of gravita- tion and electromagnetism, and an explanation for dark matter and dark energy, etc., but so far to little avail. One is left with the impression that something might be fundamentally wrong with the premises underlying the doctrine of physics applicable today, which is preventing a solution of these problems from being found. As a possible cause, the author proposes that the gravitation of the photons is not so negligible that it can be completely ignored (although this assumption does not accord with the current state of physics). Departing therefore from the accepted doctrine, he assumes that gravitation might possess a hitherto unknown important influence on electromagnetism. This paper then examines the consequences of this assumption on physics. A precise analysis will lead to the insight that the gravitation of a photon is as dynamic as the photon itself, and therefore must be taken into account with all associated physical considerations. The hitherto accepted case of a static gravitation of photons, on the other hand, can be totally neglected, as it does not exist for photons. Of key importance is the statement that the gravitation of photons is produced by gravitational quanta, and thus appears in quantised form. It is therefore necessary to rethink the physics of photons. This leads to a number of other interesting insights, as will be borne out in the further course of this paper. In the event that the assumption of the influence of gravitation on electromagnetism turns out to be correct, then this would represent a major step in unravelling the still largely unknown nature of gravitation and its significance in the natural events of the microcosmos; furtheron it would be an important contribution regarding a “New Physics” and a “New Cosmology”.

The author said that gravitation can affect electromagnetism is base on a presume “gravitation of the photons is not so negligible that it can be completely ignored”.In fact ,I am curious that if remove the hypothesis,does this conclusion still correct? Welcome to comment!

(source:SCIRP)




没有评论:

发表评论